Primera Ley de Newton o principio de inercia :
Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser en tanto que sea obligado por fuerzas impresas a cambiar su estado.
La primera ley especifica que todo cuerpo continúa en su estado de reposo o de movimiento rectilíneo uniforme, a menos que actúe sobre él una fuerza que le obligue a cambiar dicho estado.
Este principio establece que la materia es inerte, en tanto que por sí misma no puede modificar su estado de reposo o movimiento. Así, pues, constituye una definición de la fuerza como causa de las variaciones de velocidad de los cuerpos e introduce en física el concepto de sistema de referencia inercial.
Por lo demás, aunque la experiencia diaria parece contradecir la segunda parte del enunciado, que un cuerpo en movimiento se mantendrá así de forma indefinida a no ser que actúe sobre él alguna fuerza, la realidad es que los cuerpos están sometidos a la acción de fuerzas de fricción o rozamiento, que los van frenando progresivamente.
Segunda Ley de Newton o Ley de Fuerza:
El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.
La segunda ley explica qué ocurre si sobre un cuerpo en movimiento actúa una fuerza. En ese caso, la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en la cantidad de movimiento de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, esto es, la fuerza y la aceleración están relacionadas.
En términos matemáticos esta ley se expresa mediante la relación:
Donde vecp es la cantidad de movimiento y vecF la fuerza total. Bajo la hipótesis de constancia de la masa y pequeñas velocidades, puede reescribirse más sencillamente como:
que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad distinta para cada cuerpo es su masa de inercia, pues las fuerzas ejercidas sobre un cuerpo sirven para vencer su inercia, con lo que masa e inercia se identifican. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo.
Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo.
De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza también valdrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido.
La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a).
Tercera Ley de Newton o Ley de acción y reacción :
Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en direcciones opuestas.
La tercera ley expone que por cada fuerza que actúa sobre un cuerpo, éste realiza una fuerza de igual intensidad y dirección pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas siempre se presentan en pares de igual magnitud, sentido opuesto y están situadas sobre la misma recta. Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita "c".
Es importante observar que este principio de acción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedecen por separado a la segunda ley.
Junto con las anteriores, permite enunciar los principios de conservación del momento lineal y del momento angular.
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario