Primera Ley de Newton o principio de inercia :
Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser en tanto que sea obligado por fuerzas impresas a cambiar su estado.
La primera ley especifica que todo cuerpo continúa en su estado de reposo o de movimiento rectilíneo uniforme, a menos que actúe sobre él una fuerza que le obligue a cambiar dicho estado.
Este principio establece que la materia es inerte, en tanto que por sí misma no puede modificar su estado de reposo o movimiento. Así, pues, constituye una definición de la fuerza como causa de las variaciones de velocidad de los cuerpos e introduce en física el concepto de sistema de referencia inercial.
Por lo demás, aunque la experiencia diaria parece contradecir la segunda parte del enunciado, que un cuerpo en movimiento se mantendrá así de forma indefinida a no ser que actúe sobre él alguna fuerza, la realidad es que los cuerpos están sometidos a la acción de fuerzas de fricción o rozamiento, que los van frenando progresivamente.
Segunda Ley de Newton o Ley de Fuerza:
El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.
La segunda ley explica qué ocurre si sobre un cuerpo en movimiento actúa una fuerza. En ese caso, la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en la cantidad de movimiento de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, esto es, la fuerza y la aceleración están relacionadas.
En términos matemáticos esta ley se expresa mediante la relación:
Donde vecp es la cantidad de movimiento y vecF la fuerza total. Bajo la hipótesis de constancia de la masa y pequeñas velocidades, puede reescribirse más sencillamente como:
que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad distinta para cada cuerpo es su masa de inercia, pues las fuerzas ejercidas sobre un cuerpo sirven para vencer su inercia, con lo que masa e inercia se identifican. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo.
Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo.
De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza también valdrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido.
La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a).
Tercera Ley de Newton o Ley de acción y reacción :
Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en direcciones opuestas.
La tercera ley expone que por cada fuerza que actúa sobre un cuerpo, éste realiza una fuerza de igual intensidad y dirección pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas siempre se presentan en pares de igual magnitud, sentido opuesto y están situadas sobre la misma recta. Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita "c".
Es importante observar que este principio de acción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedecen por separado a la segunda ley.
Junto con las anteriores, permite enunciar los principios de conservación del momento lineal y del momento angular.
martes, 7 de julio de 2009
Principios de las leyes de Newton
Las Leyes de Newton son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinámica, en particular aquellos relativos al movimiento de los cuerpos.
En concreto, la relevancia de estas leyes radica en dos aspectos:
por un lado, constituyen, junto con la transformación de Galileo, la base de la mecánica clásica;
por otro, al combinar estas leyes con la Ley de la gravitación universal, se pueden deducir y explicar las Leyes de Kepler sobre el movimiento planetario.
Así, las Leyes de Newton permiten explicar tanto el movimiento de los astros, como los movimientos de los proyectiles artificiales creados por el ser humano, así como toda la mecánica de funcionamiento de las máquinas.
Su formulación matemática fue publicada por Isaac Newton en 1687 en su obra Philosophiae Naturalis Principia Mathematica.
No obstante, la dinámica de Newton, también llamada dinámica clásica, sólo se cumple en los sistemas de referencia inerciales; es decir, sólo es aplicable a cuerpos cuya velocidad dista considerablemente de la velocidad de la luz (que no sobrepasen los 300,000 km/s); la razón estriba en que cuanto más cerca esté un cuerpo de alcanzar esa velocidad (lo que ocurriría en los sistemas de referencia no-inerciales), más posibilidades hay de que incidan sobre el mismo una serie de fenómenos denominados efectos relativistas o fuerzas ficticias, que añaden términos suplementarios capaces de explicar el movimiento de un sistema cerrado de partículas clásicas que interactúan entre sí. El estudio de estos efectos (aumento de la masa y contracción de la longitud, fundamentalmente) corresponde a la teoría de la relatividad especial, enunciada por Albert Einstein en 1905.
En concreto, la relevancia de estas leyes radica en dos aspectos:
por un lado, constituyen, junto con la transformación de Galileo, la base de la mecánica clásica;
por otro, al combinar estas leyes con la Ley de la gravitación universal, se pueden deducir y explicar las Leyes de Kepler sobre el movimiento planetario.
Así, las Leyes de Newton permiten explicar tanto el movimiento de los astros, como los movimientos de los proyectiles artificiales creados por el ser humano, así como toda la mecánica de funcionamiento de las máquinas.
Su formulación matemática fue publicada por Isaac Newton en 1687 en su obra Philosophiae Naturalis Principia Mathematica.
No obstante, la dinámica de Newton, también llamada dinámica clásica, sólo se cumple en los sistemas de referencia inerciales; es decir, sólo es aplicable a cuerpos cuya velocidad dista considerablemente de la velocidad de la luz (que no sobrepasen los 300,000 km/s); la razón estriba en que cuanto más cerca esté un cuerpo de alcanzar esa velocidad (lo que ocurriría en los sistemas de referencia no-inerciales), más posibilidades hay de que incidan sobre el mismo una serie de fenómenos denominados efectos relativistas o fuerzas ficticias, que añaden términos suplementarios capaces de explicar el movimiento de un sistema cerrado de partículas clásicas que interactúan entre sí. El estudio de estos efectos (aumento de la masa y contracción de la longitud, fundamentalmente) corresponde a la teoría de la relatividad especial, enunciada por Albert Einstein en 1905.
Fuerza de rozamiento
Las fuerzas de rozamiento surgen cuando un cuerpo trata de deslizar sobre un plano. Parece que son debidas a interacciones entre las moléculas de ambos cuerpos en los lugares en los que las superficies están en contacto.
De mediciones experimentales se deduce que la fuerza de rozamiento:
Diagramas de cuerpos en los cuales actúan:
peso, normal, y fuerza de roce :
De mediciones experimentales se deduce que la fuerza de rozamiento:
- Siempre se opone al deslizamiento del objeto.
- Es paralela al plano.
- Depende da la naturaleza y estado de las superficies en contacto.
- Es proporcional a la fuerza normal.
La fuerza de rozamiento es ejercida por el plano sobre los cuerpos y es la responsable de que éstos disminuyan su velocidad si se dejan deslizar libremente. De aquí (primera ley de Newton) que si queremos que un cuerpo que desliza sobre un plano no disminuya su velocidad, sino que la mantenga constante, hemos de aplicarle una fuerza de igual valor a la fuerza de roce.
Algunos valores del coeficiente de rozamiento:
Madera-madera: 0,25 – 0,50
Acero – acero: 0,57
Madera encerada – nieve: 0,1
Diagramas de cuerpos en los que actúa la fuerza de roce :
Diagramas de cuerpos en los cuales actúan:
peso, normal, y fuerza de roce :
La Dinámica
La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento de los mismos.
¿Por qué un cuerpo modifica su velocidad?
Un cuerpo modifica su velocidad si sobre él se ejerce una acción externa.
Las acciones externas se representan por fuerzas.
La variación de la velocidad viene medida por la aceleración.
Luego si sobre un cuerpo se ejerce una fuerza, éste modifica su velocidad. Las fuerzas producen variaciones en la velocidad de los cuerpos. Las fuerzas son las responsables de las aceleraciones.
La unidad de fuerza usada en el S.I. es el Newton.
Las acciones que se ejercen sobre un cuerpo, además de ser más o menos intensas son ejercidas según una dirección: paralelamente al plano, perpendicularmente a éste, formando un ángulo, y en determinado sentido: hacia la derecha, hacia la izquierda, hacia arriba, hacia abajo.
Por estas razones las fuerzas para estar correctamente definidas tienen que darnos información sobre su valor (módulo), dirección y sentido. Por eso se representan por flechas (vectores)
Suscribirse a:
Entradas (Atom)